Algebraic Properties of Idempotent Substitutions
نویسنده
چکیده
This paper presents an algebra of idempotent substitutions whose operations have many properties. We provide an algorithm to compute these operations and we show how they are related to the standard composition. The theory of Logic Programming can be rewritten in terms of these new operations. The advantages are that both the operational and the declarative semantics of Horn Clause Logic can be formalized in a compositional way and the proofs of standard results, like the switching lemma, get easier and more intuitive. Moreover, this formalization can be naturally extended to a parallel computational model, and therefore it can be regarded as a basis for a theory of concurrent logic programming.
منابع مشابه
On the Algebraic Structure of Transposition Hypergroups with Idempotent Identity
This paper studies the algebraic structure of transposition hypergroups with idempotent identity. Their subhypergroups and their properties are examined. Right, left and double cosets are defined through symmetric subhypergroups and their properties are studied. Further- more, this paper examines the homomorphisms, the behaviour of attrac- tive and non-attractive elements through them, as well ...
متن کاملProduct preservation and stable units for reflections into idempotent subvarieties
We give a necessary and sufficient condition for the preservation of finite products by a reflection of a variety of universal algebras into an idempotent subvariety. It is also shown that simple and semi-left-exact reflections into subvarieties of universal algebras are the same. It then follows that a reflection of a variety of universal algebras into an idempotent subvariety has stable units...
متن کاملAn Algebraic Approach to Multidimensional Minimax Location Problems with Chebyshev Distance
Minimax single facility location problems in multidimensional space with Chebyshev distance are examined within the framework of idempotent algebra. The aim of the study is twofold: first, to give a new algebraic solution to the location problems, and second, to extend the area of application of idempotent algebra. A new algebraic approach based on investigation of extremal properties of eigenv...
متن کاملOn the nil-clean matrix over a UFD
In this paper we characterize all $2times 2$ idempotent and nilpotent matrices over an integral domain and then we characterize all $2times 2$ strongly nil-clean matrices over a PID. Also, we determine when a $2times 2$ matrix over a UFD is nil-clean.
متن کاملA CHARACTERIZATION OF BAER-IDEALS
An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990